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LE’lTER TO THE EDITOR 

‘True’ self-avoiding walk on fractals 

J C Angles d’Auriac and R Rammal 
Centre de Recherches sur Les Trts Basses Temp&atures, CNRS, BP 166X, 38042 Grenoble 
Cedex, France 

Received 25 October 1983 

Abstract. We investigate the ‘true’ self-avoiding walk on fractal spaces. The number SN 
of sites visited during an N-step walk and the root-mean-square displacement R N  are 
calculated via extensive Monte Carlo simulations on the 2D Sierpinski gasket. For all 
positive values of the repulsion parameter g, we found the same exponents: s‘= 
0.815*0.001 and v’=0.510*0.005 respectively. Both RN and SN are shown to exhibit 
a simple scaling behaviour in N and g. We compare our results with a simple Flory-like 
prediction for the exponent U’. 

Recently there has been an increasing interest in the problem of random walks on 
fractal lattices and on percolation clusters. The infinite percolation cluster at percola- 
tion threshold is just a simple example of fractal structures in physics. The next step 
is naturally the study of the self-avoiding walks (SAWS) on fractals. Different types of 
walks are expected to probe in general different properties of a fractal space. For 
instance the simple random walks (RWS) have simple properties (Alexander and Orbach 
1982, Rammal and Toulouse 1983, Angles d’Auriac et al1983) and provide a powerful 
probe giving direct access to the spectral dimension d’ which governs the density of 
states of low energy excitations. Similarly, it was argued recently (Rammal et a1 1983) 
that SAWS will probe the fractal dB and spectral dB dimensionalities of the backbone 
(i.e. doubly connected component) of the fractal structure. Following the same line 
of ideas, we investigate in this paper the ‘true’ self-avoiding walk (TSAW) on fractals. 
Only recently, Amit et al (1983) have shown that the problem of a walker who steps 
randomly, but tries to avoid places he has already visited, is actually different from 
the SAW problem. They called this problem the TSAW and show that the upper critical 
dimensionality d,  of such a walk is two while it is known to be four for SAWS (see 
Peliti 1983, Obukhov and Peliti 1983). The TSAW on a given lattice corresponds to 
a walker who can move to one of the nearest 
probability to move to a site j depends on the 
already been visited and is given by 

= exp(-gnj) / exp(-gnj). 

neighbours of the site he is at. The 
number of times nj that the site has 

f j  

The normalising sum runs over all nearest neighbours j of i. The parameter g measures 
the intensity with which the path avoids itself (g  > 0). The limit g = 0 corresponds to 
the RW problem but, except in the case of the linear chain, the TSAW is not equivalent 
to the standard SAW at g = CO. The parameter g evidently becomes irrelevant at d > d,  
and the TSAW reduces to the RW problem. 
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We first consider a fractal structure of fractal and spectral dimensionalities d and 
d respectively. The following heuristic argument (see Amit et al 1983) can be used 
for the estimation of the mean-square displacement R$ f?r large N. For a RW ( g  = 0), 
one would of course have Rf ,  =N’”Rw, where vRW=d/2h. The number of self- 
intersections of such a walk is of order N 2 / R i  - N2-d’2, The self-repulsion has the 
net effect to increase RL.  We obtain, therefore, the following estimation: 

where C denotes a numerical factor. The correction due to the fact that the walk is 
self-avoiding is asymptotically negligible for: 2 - d /2  - 2vRw < 0, and may alter the 
asymptotic behaviour for 

k = 2 - L?/2 - L?/?/a> 0. (3) 

Otherwise, if (3) is fulfilled the self-repulsion parameter g becomes relevant and 
deviations from RW statistics are expected to occur. The condition (3) is to b_e compared 
with the analogous result (Rammal an$ Toulouse 1983) for the SAW: 4- d > 0, which 
involves only the spectral dimension d without any reference to the fractal dimension 
d. As it should, (3) reduces to the known result: 2 - d > 0  on Euclidean spaces 
( d =  d =  d). In the latter case, important corrections due to g are mainly limited to 
d = 1. In opposition, (3) is fulfilled for all d,  in two important examples of fractal 
spaces: the family of Sierpinski gaskets and the infinite percolation clusters at threshold. 
In the first example, 6= In( d + l)/ln 2, d‘= 2 In( d + l)/ln( d + 3) and k > 0 for all d. 
For percolation clusters, (3) reduces to d >  1, which holds for-all d, if the value 
J = $  (Rammal and Toulouse 1983) is used as an estimation for d. 

The above result shows that fractal structures provide a rich field for the investigation 
of the TSAW statistics. In the following, we consider results for TSAWS on the 2~ 
Sierpinski gasket. Using the same methods we presented previously (Angles d’ Auriac 
et a1 1983, Rammal et a1 1984) we simulated about lo4 TSAWS of N - 5000 steps, 
for different values of the repulsion parameter g 2 0 .  All the calculations were per- 
formed (in assembly language) on processor M 68000. The gaskets were generated 
iteratively, and chosen to contain some lo4 sites (being of 8th order of iteration for 
d = 2). For each realisation of the TSAW, both starting points and displacements 
(equation (1)) were randomly chosen according to standard Monte Carlo procedure. 
Two statistical properties were investigated: the root-mean-square displacement RN 
and the average number SN of distinct visited sites during N-step walks (range). The 
usual Euclidean metric has been used to measure the displacements of the walker. 

In figure 1 are shown the Monte Carlo results for SN at different values of the 
repulsion parameter 0 < g <CO. After a short transient regime, different initial slopes 
converge towards a well defined value sf indepepdent of g > 0. For g = 0, we recover 
with a very high accuracy the known value s = d / 2  = 0.682, which corresponds to the 
RW limit. For all positive values of g,  including g = 03, we obtain a different value for 
the corresponding exponent: S N  - N”. From the best fit of data at large N, we have 
obtained the following estimation: s f  = 0.815*0.001. This estimation of s’ is also 
supported by a much more extended analysis at g = 0.5, where averages over 3 x lo4  
runs were performed. As expected, the exponent s f  is enhanced ( s f >  s) by the 
self-repulsion. The limiting case.g =CO appears to be controlled by the same exponent, 
making a net difference with Euclidean spaces where g = CO plays a special role in the 
TSAW problem. 
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F i r e  1. Average range S, of the TSAW, on a 2D Sierpinski gasket, for different values 
of the repulsion parameter: g =a), 1.5, 1, 0.5, 0.3, 0.2, 0.1 and 0. For each value of g, 
average over !04 runs of up to N = 5000 steps was performed. Broken lines, of slopes 
s = 1 and s = d/2 respectively, are shown for comparison (d = 1.365, d = 1.585). Different 
initial slopes merge into the asymptotical slope s' = 0.815 for large N, independent of the 
value of g>O. 

Figure 2 gives the results for the root-mean-square displacement RN. Again, 
different initial slopes mergejnto an asymptotical slope v' at large N, for all values of 
g > 0. As it should be, Y = d / 2 d  is recovered in the RW limit (g = 0). However, the 
estimation of v' is less accurate than that of s'. Indeed, using the best fit of our data 

I 

2 4 6 0 
In N 

Figure 2. The sameplo: as figure 1, for the root-mean-square displacement R,. Broken 
lines of slopes Y = d / 2 d  and U' = 0.51 corresponding to g = 0 and g 0 are shown for 
comparison. 
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at large N, we have found v'=0.510*0.005. In trying to extract v' (or v) on fractal 
space, one encounters several difficulties, mainly related to spatial fluctuations of the 
structure. It should be noticed that such a complication is not present in the calculations 
of S,, which provide very accurate results for s' (or s). 

Within the accuracy of our estimations, we conclude that on a gasket, the exploration a is compact, in the following sense: SN - R N ,  i.e. s' = v'd. This is the case for g = 0 
and seems to occur also for all positive values of g. Already visited sites have a high 
probability of revisitation (in spite of the repulsion!), so that, given a compact volume 
which confains the walker, most points inside this volume are visited before a new site 
outside the volume is explored. An example of compact exploration is of course the 
one-dimensional RW or TSAW (Rammal et a1 1984). 

The value of the exponent Y' so obtained lies between (see table 1) the corresponding 
value for the RW and that recently calculated for the SAW (Rammal et a1 1983). In 
particular, this shows that the TSAW statistics at g =cc is definitely distinct from that 
of the SAW on the same structure. In table 1, we have summarised the relevant results 
for different RW problems on the gaskets. 

Table 1. Random walks exponents on the Sierpinski gaskets. RW: simple random walk, 
SAW: self-avoiding walk, TSAW: true self-avoiding walk. U = exponent of the RMS displace- 
ment (RN - N u ) ;  s =exponent of the tverage range (S, - N " ) ;  d = Euclidean dimension; 
d = l n ( d +  l ) / ln  2: fractal dimension; d = 2 In(d+ l ) / ln(d+3):  spectral dimension. 

R W  SAW TSAW 

d d 2 U S U S U S 

1 1 1 112 112 1 1 213 213 
2 1.5849 1.3652 0.4306 0.6826 0.798 1 0.510 0.815 
3 2 1.5474 0.3868 0.7737 0.729 1 

In what follows we will show that the main asymptotical properties of the TSAW 

can be analysed with the help of a simple scaling argument. Following previous work 
on d = 1, it is natural to consider z = gNk as a reduced parameter for the TSAW 

statistics. For instance, matching together the respective RW and TSAW power laws 
for S,: SN - N$ and S ,  - Ns' ,  one obtains the simple scaling function 

S N  = N " 4 ( g N k )  (4) 

with the following limits 

442)  - 1 at z<< 1, 

at z >> 1. - Z ( ~ ' - ~ ) / k  

Stated otherwise, gS2" is a universal function $ ( z )  of the scaling variable z, with 

4 4 2 )  - z at z<< 1, 

at z >> 1. - p / s  

In figure 3, we have shown some of our data, according to the scaling suggested 
by equation (6). All points fall on the same universal curve, which shows in particular 
the expected RW-to-TsAw crossover at z - 1. In trying to extract k from this kind of 
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Figu_re 3.- Universal plot of the average range S,: gSy’ against gNk,  where k = 
2-d/2-d/&=O.45604). For the sake of clarity, only data for g =0.1  and 1.5 were used 
in this plot. The expected crossover between two distinct regimes is clearly observed, at 
g N k  - 1. 

plot, we have checked the validity of the heuristic argument leading to the proposed 
value (equation (3)) of the dimension of g. The universal plot of figure 3 strongly 
supports this argument as well as the scaling (equation (6)) in N and g. 

We now discuss a simple Flory-like argument for the exponent v’. Following a 
previous study of SAWS on fractals (Rammal er u1 1983), a first important guess is 
that the combination v’d is an intrinsic property, independent of the space in which 
the fractal is embedded, whereas d and v’ bot! depend on this embedding. The 
simplest assumption is that v’d depends only on d. On the other hand, the Flory-like 
argument (Pietronero 1983, Bernasconi and Pietronero 1983) provides a satisfactory 
interpolation between the values of v’ for Euclidean lattices: 

v’ = 2 / ( d  + 2 )  (7) 
for d a 2 .  It is exact for d = 2  and probably for d = l .  _This suggests a similar 
approximation for fractals, under the assumption that only d plays a role 

v ’ = ( d / d ) 2 / ( d + 2 ) .  (8) 
This is the simplest approximation that reduces to (7) for Euclidean spaces. However, 
(8) must be considered only as a working hypothesis. For the 2~ Sierpinski gasket, 
(8) gives v’=O.5119 which is surprisingly close to our numerical estimation for v’. 
This ‘agreement’ is probably accidental, because v’ (as given by (8)) becomes lower 
than U = d / 2 d  for d> 2 .  

In summary we have presented the first results for the TSAW statistics on fractal 
spaces. Our Monte Carlo simulation for the 2~ Sierpinski gasket exhibits a compact 
exploration of space and a net deviation due to the self-repulsion parameter. A new 
type of critical behaviour with universal exponents v’ and s‘ ?(independent of the 
repulsive parameter g )  was found. The proposed scaling analysis in N and g is found 
to be consistent with the Monte Carlo results, and can be used to understand the 
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self-attracting regime (g < 0). In view of the validity of the relation v’ = (d/a)2/(d+ 2), 
it is of great interest to check this working hypothesis on different fractal structures. 
A more detailed understanding of the universality classes for SAWS and TSAWS on 
fractals will be necessary to resolve that question. 

It is a pleasure to thank Drs G Toulouse, G Paladin and Professor L Peliti for many 
valuable discussions and interesting remarks. 
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